...
Publications | Taisei Saida
Taisei Saida
Taisei Saida
Home
Google Scholar
Publications
Jounal Articles
Conference Papers
Conferences
Experience
Blog
Contact
Light
Dark
Automatic
Publications
Type
Conference paper
Journal article
Date
2024
2023
2022
2021
System fragility analysis of highway bridge using multi-output Gaussian process regression surrogate model
Advances in Structural Engineering (
Impact Factor: 2.1
in 2023)
Taisei Saida
,
Muhammad Rashid
,
Mayuko Nishio
Cite
DOI
TL-GPRSM: A python software for constructing transfer learning Gaussian process regression surrogate model with explainability
Software Impacts (
Impact Factor: 2.1
in 2022)
Taisei Saida
,
Mayuko Nishio
PDF
Cite
DOI
Transfer learning Gaussian process regression surrogate model with explainability for structural reliability analysis under variation in uncertainties
Computers & Structures (
Impact Factor: 5.372
in 2021;
Structural Engineering at Google Scholar Metrics
)
Taisei Saida
,
Mayuko Nishio
Cite
DOI
PDF (Accepted version)
CNN-based segmentation frameworks for structural component and earthquake damage determinations using UAV images
Earthquake Engineering and Engineering Vibration (
Impact Factor: 2.810
in 2021)
Taisei Saida
,
Muhammad Rashid
,
Yudai Nemoto
,
Shota Tsukamoto
,
Takehiko Asai
,
Mayuko Nishio
PDF
Cite
DOI
Gaussian Process Regression Surrogate Model for Seismic Vulnerability Assessment of Highway Bridge Structure System
System fragility is required especially for the vulnerability assessment of existing bridges that configure transportation network as a …
Taisei Saida
,
Muhammad Rashid
,
Mayuko Nishio
Cite
DOI
Gaussian process regression surrogate model for dynamic analysis to account for uncertainties in seismic loading
Reliability assessment of civil structures under seismic loads requires probabilistic evaluation considering the uncertainty of input …
Taisei Saida
,
Mayuko Nishio
Cite
DOI
Digital twin framework for real-time dynamic analysis visualization with detecting dynamic changes in structures properties using PINN
This study developed a framework for real-time dynamic analysis of structural members using physics-informed neural networks (PINN). …
Toko Okuda
,
Taisei Saida
,
Gen Matono
,
Mayuko Nishio
Cite
DOI
転移学習ガウス過程回帰サロゲートモデルによる構造性能解析の計算負荷低減
This study proposes the surrogate modeling by the Gaussian process regression with the transfer learning (TL-GPRSM). The TL-GPRSM can …
才田 大聖
,
西尾 真由子
Cite
ARD カーネルによる非線形地震応答解析のガウス過程回帰代替モデル構築
土木学会論文集A2(応用力学)
才田 大聖
,
西尾 真由子
Cite
DOI
ARD カーネルによる非線形地震応答解析のガウス過程回帰代替モデル構築
Monte Carlo calculation is used in the seismic risk analysis of infrastructures that consider various parameter uncertainties; however, …
才田 大聖
,
西尾 真由子
Cite
Cite
×