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Tis study presents a novel approach for anomaly event detection in large-scale civil structures by integrating transfer learning
(TL) techniques with extended node strength network analysis based on video data. By leveraging TL with BEiT +UPerNet
pretrained models, the method identifes structural Region-of-Uninterest (RoU), such as windows and doors. Following this
identifcation, the extended node strength network uses rich visual information from the video data, concentrating on structural
components to detect disturbances in the nonlinearity vector feld within these components. Te proposed framework provides
a comprehensive solution for anomaly detection, achieving high accuracy and reliability in identifying deviations from normal
behavior. Te approach was validated through two large-scale structural shaking table tests, which included both pronounced
shear cracks and tiny cracks. Te detection and quantitative analysis results demonstrated the efectiveness and robustness of the
method in detecting varying degrees of anomalies in civil structural components. Additionally, the integration of TL techniques
improved computational efciency by approximately 10%, with a positive correlation observed between this efciency gain and
the proportion of structural RoUs in the video. Tis study advances anomaly detection in large-scale structures, ofering
a promising approach to enhancing safety and maintenance practices in critical infrastructure.

Keywords: anomaly event detection; node strength network; nonlinearity disturbance; Region-of-Uninterest; shaking table test;
transfer learning

1. Introduction

Engineering structures often sustain damage throughout
their service life, deteriorating over time due to various
environmental and mechanical factors. Both immediate and
prolonged damage contribute to the aging of structures and
a subsequent reduction in their service life, highlighting the
importance of the structural health monitoring (SHM)
process. SHM is widely used for managing and maintaining
civil infrastructure systems, involving the assessment of
structural loads, responses, and real-time performance, as
well as predicting the future behavior of diferent types of
structures [1].

With the broad application of SHM systems in recent
years, a large amount of data has been generated, leading to
signifcant advancements in data anomaly detection. Te
emerging feld of structural anomaly detection is gaining
prominence due to its crucial role in ensuring the safety and
reliability of various infrastructures, including buildings,
bridges, and industrial machinery. It is essential to difer-
entiate between techniques that assume stationarity in
a structure’s dynamic behavior, which are efective for
identifying slow-developing anomalies such as material
aging and gradual foundation settlement [2]. In contrast, for
structures experiencing rapid damage, such as from ex-
plosions, impacts, or earthquakes, alternative analysis
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techniques, like time-frequency analysis, are necessary. Bao
et al. [3] used a deep neural network (DNN)–based meth-
odology for high-accuracy autodetection of anomalies in
SHM systems, though it only considered time-series data
(acceleration). Meanwhile, Tang et al. [1] developed a dual-
information convolutional neural network (CNN) that
achieved higher accuracy in multiclass anomaly detection
compared to the DNN approach. Structural anomalies,
characterized by unexpected conditions or changes, must be
addressed to prevent performance declines or catastrophic
failures. Wang et al. [4] utilized multilevel data fusion and
anomaly detection techniques to detect and locate damage,
successfully identifying even a 1% reduction in local stif-
ness. However, these studies predominantly relied on time-
series data, such as acceleration and displacement responses,
which introduced challenges related to sensor dependency,
optimal placement, and large-scale data processing.

In recent years, the traditional reliance on manual in-
spection and scheduled maintenance has evolved with the
integration of advanced imaging technologies and machine
learning (ML) [5]. Transfer learning (TL), an efective ML
method, involves applying knowledge from one domain
(source domain) to a new but related domain (target do-
main). Tis technique is particularly useful for acquiring
large volumes of labeled data for specifc tasks that are
challenging or resource-intensive [6, 7]. Previous studies
have focused on anomaly detection and damage condition
assessment using TL, but these primarily addressed 2D time-
history data and crack detection from static images [8–11].
Pan et al. [8] proposed a TL-based technique for detecting
anomalies in SHM data, including acceleration, strain,
displacement, humidity, and temperature measurements. TL
reduces the need for extensive target bridge data by
leveraging knowledge from related domains. Bao et al. [9]
employed a deep TL network, SHMnet, pretrained for
structural condition detection, using acceleration data as
input. By utilizing models pretrained on extensive datasets,
TL ofers substantial computational and time efciency,
making it a compelling choice for structural anomaly de-
tection. Tese advancements are crucial in SHM, where
rapid and accurate anomaly detection is essential. Tus, TL
has become a vital tool in streamlining the anomaly de-
tection process, enhancing the computational efciency and
overall efectiveness of SHM systems.

Video data provide a rich source of spatial and temporal
information, making them particularly well-suited for
monitoring structural conditions. Techniques based on
video data ofer several advantages, including cost-efective
and noncontact data acquisition, superior spatial resolution,
and the capability to measure dynamics at multiple points
[12]. By utilizing video-image-based sensing methods,
structural motion signals can be extracted without physical
sensors, allowing for a dense network of contactless sensors
across the entire structure [13]. For example, Pan et al. [14]
developed a deep learning–based YOLOv3-tiny-KLT algo-
rithm that accurately measures structural motion while
mitigating the efects of illumination changes and back-
ground noise. Oliveira et al. [15] used the open video
platform YouTube to flter and analyze SHM data in

response to seismic waves, providing insights into wave
propagation and its efects on the built environment. In-
tegrating computer vision (CV)–based structural displace-
ment monitoring with traditional contact acceleration
sensors can enhance accuracy and sampling rates for dy-
namic deformation estimation, providing high-frequency
vibration information and improving displacement sam-
pling rates for SHM applications [16]. Merainani et al. [13]
utilized video image fows to extract motion signals, enabling
dense sensor coverage and aiding in modal identifcation
and uncertainty quantifcation. Additionally, satellite
monitoring techniques ofer the advantage of covering
numerous structures quickly and at relatively low costs,
providing historical information on structural behavior.
However, recent studies have highlighted limitations when
using satellite data for structures sensitive to temperature
variations [17]. Tese structures can undergo deformations
that challenge satellite readings, leading to information loss.
As remote SHM techniques are less efective than on-site
methods for detecting anomalies, it is crucial to develop
techniques and protocols that integrate information from
various methods.

Te authors previously conducted research on anomaly
event detection, focusing on nonlinear occurrences, and
validated the efciency of their proposed methods through
a small-scale frame model shaking table test [18]. Tis
method detects nonlinearity in structural vibrations using
video data, with feature extraction performed via optical
fow techniques. However, a signifcant challenge persists
across the feld: the high computational costs associated with
the analysis process. Addressing this issue is crucial for
advancing SHM technologies and methodologies.

Anomalous events within a structure often manifest as
singularity motion. Analyzing these singularity motion re-
sponses, particularly by depicting boundaries informed by
optical fow-derived motion responses, is an efective
strategy for detecting anomalies and damage. In structural
damage detection, engineers typically focus on identifying
damage or anomalies in key structural components such as
beams and girders, referred to as the “Region-of-Interest
(RoI)” within video data. Conversely, building envelopes,
including elements like doors and windows, are generally
not the primary focus of these assessments and are thus
categorized as the “Region-of-Uninterest (RoU)” [19].
Identifying the RoU before damage detection signifcantly
enhances the efciency of the process by reducing the
number of pixel points that need to be analyzed. Further-
more, most existing research on damage identifcation
primarily addresses experimental-scale models or specifc
regions (such as bolted joints), with fewer applications fo-
cused on full-scale structures [20–22]. Tis study utilized
video data from the National Research Institute for Earth-
quake Science and Disaster Resilience (NIED) to facilitate
the detection of structural anomalies during seismic events
[23]. Te institute’s website has published over 100 videos of
shaking table tests on full-scale structures, including rein-
forced concrete (RC) buildings and bridge piers, wooden
houses, steel buildings, and soil-pile foundations, captured
from multiple perspectives [24].
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Tis study introduces a novel method for detecting
anomalies due to structural nonlinearity in video data,
validated through a 3-D full-scale shaking table test con-
ducted by NIED. Te method involves extracting nonlinear
disturbances from anomaly events in the velocity vector feld
estimated by optical fow, constructing an extended node
strength network, and applying a morphological opening
operation for feature extraction and enhancement. While
this basic anomaly detection method was demonstrated in
our previous study [18], this study presents two key ad-
vancements for applying the method to general video data.
First, the developed algorithm, which was previously applied
only to small-scale experimental structures, is now tested on
large-scale engineering structures to assess its efectiveness
in real-world scenarios. Second, to address the challenge of
excessive computational time, we integrate a TL algorithm to
initially identify and flter out the RoU, thereby enhancing
identifcation efciency.

Te specifc scientifc contributions can be summarized in
three key points: First, the developed extended node strength
network algorithm was validated for identifying anomaly
events (damage) in actual large-scale structures, including both
pronounced and tiny cracks. Second, the concept of RoU in
structural analysis was introduced, signifcantly enhancing
overall computational efciency by identifying the RoU in
advance during the damage detection process. Tis approach
not only streamlined the process but also broadened the ap-
plicability of RoU detection across various structural analysis
scenarios. Finally, a comparison of computational efciency
before and after applying TL demonstrated the efectiveness of
the proposed fusion method. Te remainder of this paper is
organized as follows: Section 2 presents the framework and
formulations of the proposed algorithm. Section 3 describes the
3D large-scale shaking table tests, including concrete and
wooden building tests, followed by the identifcation results of
TL for structural RoU. It also compares visualization results
before and after anomaly events (pronounced shear cracks and
tiny cracks) to demonstrate the feasibility of the proposed
method. Additionally, a morphological opening operation is
introduced to enhance features and denoise visualization re-
sults. Computational efciency, with and without TL, is also
compared. Finally, conclusions are presented in Section 4.

2. Methodology

In this section, we introduce methods for identifying the
structural RoU and detecting anomaly events due to
structural nonlinearity using optical fow-based method
from video data. Te frst subsection reviews the state-of-
the-art studies using optical fow to structural response
estimation in recent years. Te second subsection summa-
rizes the anomaly detection method developed by the au-
thors [18], which employs an extended node strength
network for more efcient detection of structural anomalies,
including velocity vector estimation, feature extraction, and
feature enhancement. Issues related to computational cost
and the necessity for deep learning techniques are also
discussed. Te subsequent subsection explains the identif-
cation of the RoU for reducing computational costs. TL,

utilizing BERT pretraining of image transformers (BEiT)
and a Unifed Perceptual Parsing Network (UPerNet), is
employed for RoU identifcation due to its efectiveness with
small datasets. Te framework of the proposed method and
its theoretical overview, including mathematical formula-
tions, are presented in the following subsections.

2.1. LiteratureReviewof State-of-the-Art StudiesUsingOptical
Flow. Optical fow, an advanced video analysis technique,
estimates real-world object motion between observers and
scenes by analyzing the dense feld corresponding to the
interframe displacement of each pixel [25]. Motion esti-
mation from video data is an active area of CV research.
Early attempts at motion feld estimation employed
intensity-based optical fow techniques, such as the
Lucas–Kanade (LK) [26] and Horn–Schunck (HS) [27]
methods. Recently, structural displacement extraction using
traditional optical fow algorithms has become common. For
instance, Javh et al. [28] used a gradient-based optical fow
approach for high-accuracy displacement estimation
(smaller than a thousandth of a pixel), validated through
experiments with a steel beam and a cymbal. Bhowmick et al.
[29] applied the optical fowmethod to track pixel-level edge
points of a structure and obtained the full-feld mode shape
of a cantilever beam using dynamic mode decomposition.
Currently, state-of-the-art optical fow techniques are based
on CNNs, with most top-performing methods incorporating
deep learning architectures [30]. Modern approaches, such
as FlowNet 2.0, use deeper architectures and advanced
training techniques to enhance performance and accuracy in
optical fow estimation [31]. Another signifcant advance-
ment is the Recurrent All-Pairs Field Transform (RAFT)
model, which employs recurrent units to iteratively refne
optical fow estimates, achieving state-of-the-art results on
various benchmarks [32]. Additionally, LiteFlowNet has
been developed to create lightweight and efcient CNNs that
maintain high performance while reducing computational
complexity [33]. Lagemann et al. [34] demonstrated the
efectiveness of recurrent deep learning models in particle
image velocimetry applications and highlighted the adapt-
ability of CNNs in diferent optical fow contexts. While the
integration of deep learning with optical fow has advanced
the feld, it also introduces complexities, including the need
for extensive model training and increased data re-
quirements. Terefore, the decision to combine deep
learning with optical fow should be based on the specifc
application and the required identifcation accuracy.

2.2. Framework of the Proposed Method. Te proposed
method for detecting structural anomaly events during
earthquakes, relying solely on video data, integrates TL with
an extended node strength network. Figure 1 illustrates the
framework of this method and the fowchart detailing the
subsequent steps. First, TL identifes the structural RoU,
isolating frames that contain only the relevant structural
component information for further analysis. Second, ve-
locity feld estimation is performed on these frames using the
Farneback optical fow algorithm. Tird, features of the
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anomalous events are extracted and visualized in diferent
colors. Te extended node strength network is constructed
based on the captured motion information from all pixel
points. Finally, the feature detection results are denoised and
enhanced using a morphological opening operation.

2.3. TL for RoU Identifcation. Tis section details the seg-
mentation of the structural RoU, such as doors and win-
dows, using ML, as depicted in Step 1 of Figure 1. Recently,
transformer-based models [35, 36] have gained attention for
image recognition as alternatives to CNN [37]. Transformers
excel at capturing long-distance dependencies, which partly
accounts for their superior performance compared to CNN.
However, transformers generally require large amounts of
training data. TL addresses this issue by allowing models
trained on extensive datasets to perform efectively on
specifc tasks with smaller datasets. Consequently, BEiT [36],
a transformer-based model, was employed, leveraging TL to
segment the RoU components. BEiT utilizes the BERT ap-
proach [38], a widely used transformer-based model in
natural language processing, for image recognition. BEiT
treats images as sequences of words and learns to extract
features through a masked part-prediction task.

First, BEiT was pretrained, as shown in Figure 2. Te
pretraining utilized the ImageNet dataset [39]. During this
phase, the training involved predicting visual tokens for
masked patches, a process known as masked image mod-
eling (MIM) [36]. An input image is divided into N image
patches x

p
i􏽮 􏽯

N

i�1, which are then tokenized into N visual
tokens using zi􏼈 􏼉

N

i�1. Te tokenizer used in DALL-E [40] is
employed for the tokenization process. Specifcally, 40% of
image patches were masked. Te masked positions are

denoted as M ∈ 1, . . . , N{ }0.4N. Tese masked patches are
input to a transformer with L layers and encoded into the
hidden vector hL

i􏽮 􏽯
N

i�1. From these hidden vectors, the
corresponding visual tokens are predicted using a linear
layer and a softmax function:

pMIM z′ xM
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � softmaxz′ Wch

L
i + bc􏼐 􏼑. (1)

In this pretraining, learning was conducted to maximize
the log likelihood of the correct visual tokens, zi, as
expressed in the following equation:

max 􏽘
x∈D

EM 􏽘
i∈M

logpMIM zi x
M

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎡⎣ ⎤⎦, (2)

where D is the training corpus, M represents randomly
masked positions, and xM is the corrupted image masked
according to M.

Additionally, the model predicts the information of the
masked images based on the information from the
remaining unmasked parts. Tis approach helps the model
capture not only local details but also the broader contextual
information of the entire image.

Next, we performed pretraining for semantic segmentation.
BEiT, pretrained withMIM using ImageNet, was utilized as the
backbone encoder for UPerNet [41]. Te advantages of
employingUPerNet as the baselinemodel are twofold. First, it is
a popular choice for models with transformer-based backbones,
such as BEiT and Swin Transformer, making it a well-
established baseline for real-world data studies like ours. Sec-
ond, after training, the UPerNet model achieved an in-
tersection-over-union (IoU) of 0.82 for windows and 0.84 for
doors, demonstrating high accuracy for these structural com-
ponents. Te UPerNet model architecture is illustrated in
Figure 3. UPerNet incorporates a pyramid-pooling module that
extracts feature maps from each encoder stage, integrating
information across diferent scales for more precise segmen-
tation. Additionally, although BEiT is not the latest model, it
provides an efective balance between performance and com-
putational efciency for our specifc application. Its imple-
mentation allowed us to utilize pretrained models and
incorporate TL, signifcantly reducing training time while
maintaining high accuracy in the results. For semantic seg-
mentation pretraining, we used the ADE20K dataset [42]. Tis
pretraining aimed at enabling the BEiT+UPerNet model to
acquire the versatility necessary for efective segmentation tasks.

After pretraining BEiT using MIM, the BEiT +UPerNet
model, pretrained for semantic segmentation, was further
trained to segment the RoU, specifcally targeting windows
and doors.Te dataset comprised 170 images for training, 21
for validation, and 22 for testing. Given the limited training
data, data augmentation techniques were employed, in-
cluding random resizing (0.5 to 2.0 times) and random
fipping (with a probability of 0.5). Te images used for
training had a resolution of 640× 640 pixels. Te loss
function for training was defned using a combination of
dice loss and cross-entropy, as indicated by the following
equation:

Video capture

Step 1: Transfer learning for 
structural RoU identification

Step 2: Farneback optical fow for 
velocity vector feld estimation

 Step 3: Capture nonlinearity disturbance of 
velocity feld for feature extraction via 

extended node strength network

Step 4: Morphological opening 
operation for feature enhancement

Anomaly event
detection

Figure 1:Te fowchart of the proposed method for anomaly event
detection.
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Loss(y, 􏽢y) � 3 1 −
2y􏽢y + 1

y + 􏽢y + 1
􏼠 􏼡 − y log(􏽢y)

− (1 − y)log(1 − 􏽢y),

(3)

where y represents the ground truth and 􏽢y is the predicted
value. Training was carried out for 2000 epochs with a batch
size of two, and the parameters resulting in the lowest loss
for the validation data were selected.Te AdamWoptimizer,
with a learning rate of 3×10− 5 and a weight decay of 0.05,
was used for optimization. Tese parameters mentioned
above were determined through a process of trial and error
while monitoring the loss.

An example of RoU recognition for removing the window
parts of a building using NIED video data [23] is shown in
Figure 4. Tese images depict the frames before and after RoU
recognition. In the detected area, pixel values are set to zero,
allowing for the removal of these pixels in the subsequent
anomaly event detection process. By successfully identifying
the structural RoU, video data that exclusively contain struc-
tural component information are utilized, thus improving the
computational efciency of the feature extraction process.

2.4. Overview of Anomaly Event Detection Method. Te
anomaly event detectionmethod for video data as detailed in
[18] is summarized in this section. Te method comprises

[S]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BEiT encorder

Masked image modeling head

123 234 456 567
987 876 765 543
112 223 334 445
211 322 433 544

567 987 876 223 445

Tokenizer Decoder
Original

image

Image
patches

Masked
patches

Blockwise
masking

Flatten Patch
embedding

Position
embedding

Visual tokens

Reconstructed
image

Unused during
pretraining

Figure 2: Te overview of pretraining BEiT [36].

1/4

1/8
1/16

1/32

1/4
1/8

1/16
1/32

PPM head

Fuse Head

Feature pyramid networkImage

Fused feature map

Segmented image

Conv 3 × 3 Classifer

Head

Figure 3: UPerNet model architecture.
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three main steps: (1) estimating the velocity feld using
optical fow, (2) extracting features with the node strength
network, and (3) enhancing features through a morpho-
logical opening operation, as illustrated in Steps two to four
of Figure 1. Tis approach allows for the visualization of the
timing and location of anomalous events, which result from
local disturbances in the vector feld caused by nonlinear
structural vibrations.

2.4.1. Velocity Field Estimation by Optical Flow. A widely
used CV technology, optical fow, was initially employed for
estimating the velocity vector feld. Unlike traditional optical
fow algorithms such as the HS and LK methods, the Far-
neback optical fow method utilizes polynomial expansion,
enabling it to model more complex motion patterns than
linear models. As a result, the Farneback algorithm is better
suited for estimating the movements of objects with intricate
trajectories [43].

In the Farneback optical fow method, the basic as-
sumption is that the brightness intensity function f(x, y) of
the pixel vector p � x y( 􏼁

T can be approximately
expressed using a binary quadratic polynomial, as shown in
equation (4), for a small image neighborhood:

f(x, y)∼a0 + a1x + a2y + a3x
2

+ a4y
2

+ a5xy, (4)

where x and y are the coordinates of the pixel points with
coefcient ai (i� 1–5). Equation (4) can be written in matrix
form as

f(p)∼p
T
Ap + b

T
p + c. (5)

After time interval Δt, the global displacement of p is
Δp(Δx,Δy) and can be obtained as

Δp � −
1

2A
− 1
t+Δt bt+Δt − bt( 􏼁

. (6)

Te estimator of Δp is obtained by minimizing the fol-
lowing error function: To reduce the infuence of noise, error
function e for neighborhood area N can be represented as

e � 􏽘
ΔN∈N

ω(ΔN) AM(p + ΔN)Δp − Δb(p + ΔN)
����

����
2
, (7)

where ω(ΔN) is the Gaussian weighting function in N,
AM � 1/2 (At + At+Δt), and Δb � − 1/2 (bt+Δt − bt). In this
study, N� 16, that is, an area of 4× 4 pixels, was selected as
the neighborhood area, considering the trade-of between
the calculation cost and estimation accuracy. Te weighting
function represents the level of infuence each point in the
surrounding area, with its value increasing as a pixel moves
closer to the target pixel within the neighborhood. Farne-
back optical fow is then applied for frame-by-frame analysis
to capture motion information across all frames in the video.

2.4.2. Feature Extraction by Extended Node Strength
Network. A node strength network was developed to detect
prominent crowd motions [44, 45]. Tis network quanti-
tatively describes pedestrian movements and can be used for
image-edge detection. Te study assumes that the velocity
vector feld is locally disrupted by sudden changes in vector
magnitude and direction due to structural nonlinearities. As
a result, the node strength network is applicable, and the
original algorithm was presented in [44].

Tis algorithm is well-suited for identifying motion
patterns of closely located pixels. However, nonlinear events
often induce irregular changes in velocity (both magnitude
and orientation) of structural components or the entire
structure. Terefore, the objective of this study extends
beyond identifying a single motion pattern where two nodes
move in the same direction; instead, it considers motion in
any arbitrary direction. Two novel optimization approaches
are proposed. First, the constraint for calculating the relative
velocity vij between pixels #i and #j is removed, allowing for
motion analysis in all directions at pixel points.Tis updated
vij
′ is defned in equation (8). Second, a Gaussian weighting

function, detailed in equation (9), is introduced to efectively
capture the varying impacts of diferent motion directions
between two nodes, while also minimizing the infuence of
motion changes occurring in noninterest regions (noise):

(a) (b)

Figure 4: An example of structural RoU identifcation based on TL. (a) Before RoU (original frame). (b) After RoU (processed frame).
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vij
′ � vi − vi( 􏼁 · eij, (8)

ϕij �
1

����
2πσ2

􏽰 exp −
(x − μ)

2

2σ2
􏼠 􏼡, (9)

dij � dj − di,

eij �
dij

dij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

(10)

where the variance σ was set to 1 and the mean μwas set to π.
Tis confguration implies that when the angles between
vectors vi and vj are close to π (180°), the weight assigned to
this state is maximized. Conversely, when the angle is 0°or 2π
(360°), indicating that the vectors are aligned in the same
direction, the assigned weight is very close to zero. Tis is
because the repulsive force is minimal when the vectors
point in the same direction. However, when the angle be-
tween the two vectors approaches π, the repulsive force
becomes signifcant because of the opposite directions.
Terefore, the extended inertial centrifugal force can be
expressed as

Fij
′ � − miϕij

v′2ij
dij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
eij, (11)

where mi denotes themass of the node i. Because the analysis
target in this study was the pixel points in the image, the
mass of all the pixel points was set to 1 to simplify the
calculation. Subsequently, for the adjacency matrix, the
extended node strength s(i) at pixel #i can be constructed
and expressed using the extended inertial centrifugal force
Fij
′ as follows:

s(i) � 􏽘

N

j�1
Fij
′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (12)

After calculating each pixel point in the image, the
matrix of the extended node strength S for a frame image
with pixels of r rows and c columns, that is r× c�N, can be
obtained using equation (13). Tis matrix can be processed
into a grayscale image by reducing the data dimensions. By
visualizing matrix S, the disturbed part in the vector feld
estimated by the optical fow can be identifed:

S �

s11 · · · s1c

⋮ ⋱ ⋮

sr1 · · · src

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

2.4.3. Feature Enhancement by Morphological Opening
Operation. Morphological operations are fundamental
techniques in image processing that alter shapes within an
image through mathematical morphology [46]. Tese op-
erations utilize a structuring element—a small geometric
probe—that interacts with image pixels to analyze and
modify shapes and textures. Te primary morphological

operations, dilation and erosion, either expand or shrink
objects in a binary image. Dilation helps connect disjointed
parts and fll gaps, while erosion removes small details and
separates closely positioned objects.

Before applying the morphological opening operation,
a diference process is performed on the contour images
from consecutive frames of the node strength network. Te
resulting diferential image is then converted into a binary
image using a predefned threshold, which highlights
changes in the vector feld. Opening and closing are com-
bined operations involving dilation and erosion to produce
cleaner images. Opening removes noise and small objects by
frst eroding and then dilating, while closing flls gaps and
seals holes by frst dilating and then eroding. Te two
processes for an image (M) using a structuring element (E)
are defned as follows [47]:

opening � M⊝E⊕E, (14)

Closing � M⊕E⊝E, (15)

where ⊕ and ⊝ denote the dilation and erosion operations,
respectively. In the feature enhancement process, two critical
parameters need to be determined: the size of the disk-
shaped element and the threshold for binarization following
the diference process. Te rationale for selecting these
parameters was detailed in our previous study [18]. Gen-
erally, a threshold of 30 pixels and a disk-shaped element
with a 5-pixel radius were found to be optimal in experi-
mental tests. Our analysis across various scenarios showed
that these values yield efective enhancement results. Con-
sequently, for the analyses in this study, we adopted these
values as standards and made fne adjustments to optimize
the outcomes.

 . Anomaly Event Detection for Three-
Dimension Scaled Shaking Table Test

In this section, the proposed method is validated using two
cases from a full-scale shaking table test conducted by the
NIED inHyogo, Japan.Te test included a 1/3 scale model of
a six-story RC building and a three-story full-scale wooden
house.Te RC building case aimed to detect signifcant shear
cracks in the walls, demonstrating the efectiveness of the
identifcation method and the improved computational
efciency achieved through the integration of TL. Con-
versely, the wooden house case focused on detecting tiny
wall cracks that are difcult to observe with the naked eye,
thereby validating the proposed method’s applicability to
smaller, less visible anomalies.

3.1. Validation on a RC Frame Building

3.1.1. Experiment Introduction. Te test specimen was a 1/3
scale model of a six-story RC building, constructed
according to the current Building Standard Law of Japan
[48]. Figure 5 provides an overview of this specimen, in-
cluding both the structural model and the surrounding steel
safety frame. Te shaking table test included 26 scenarios

Structural Control and Health Monitoring 7
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using input waves from random signals: the Japan Meteo-
rological Agency (JMA) Kobe wave and the Takatori station
of the West Japan Railway (JR Takatori) wave. To closely
monitor local responses and damage, 32 cameras were
strategically placed both inside and outside the building,
with some camera locations illustrated in Figure 6. Tis
study utilized a case with pronounced shear cracks for
anomaly detection, as depicted in Figure 7. Te resolution of
the selected view, after preprocessing, was 552× 316 pixels.
Figures 7(a) and 7(b) show example cases before and after
the appearance of pronounced shear cracks, respectively.

3.1.2. Structural RoU Identifcation by TL. TL is a powerful
ML technique that allows a model developed for one task to
be repurposed as the starting point for another task. To
improve computational efciency and address the impact of
nonstructural RoU, such as the fuctuating light source
visible outside the left window in Figure 7, TL is applied.Tis
light source’s intermittent visibility during the shaking
process causes erroneous area identifcation, which can
compromise detection accuracy. To tackle this issue, TL
focuses the segmentation model on nonstructural elements,
specifcally targeting the identifcation of the two windows.
As detailed in Section 2.2, the model initially learns image
feature extraction from a large dataset and is then fne-tuned
using a smaller dataset of 170 images to improve the seg-
mentation of doors and windows. Tis stepwise training
approach allows for efective segmentation of nonstructural
elements even with limited data. Te segmentation results
for the windows, shown in Figure 8, illustrate the efec-
tiveness of TL in this context. A pretrained model, with
knowledge of general image features, provides a strong
foundation. Trough fne-tuning with minimal data, the
model accurately segments nonstructural elements despite
light source variability and structural diversity.

3.1.3. Anomaly Event Detection by Proposed Extended Node
Strength Network. Te far-back optical fow, as described in
Section 2.3.1, is employed to estimate the velocity feld. Te
parameters were set as follows: three pyramid layers,

a pyramid scale of 0.5, three iterations, a pixel neighborhood
size of 12 pixels, and an average flter size of 25 pixels. After
obtaining the displacement results using equation (6), ve-
locity information can be readily derived by taking the
diferential, provided the video frame rate is known.

Video data spanning 10 s were analyzed to validate the
efectiveness of the proposed method. Te results for esti-
mating the velocity felds in two image frames—before
(t� 4.2 s) and after (t� 4.5 s) the occurrence of shear
cracks—are shown in Figure 9. Te length of the arrows
represents the instantaneous velocity of the pixel points,
while the direction of the arrows indicates the velocity di-
rection. It was observed that the occurrence of shear cracks
caused a distinct nonlinear change in velocity within the
afected area. However, velocity alone is not a reliable in-
dicator of this anomaly. Tis limitation is due to the fact that
changes in velocity cannot uniquely identify anomalous
events, as other regions—such as window edges and areas
around wires and bolts—also show velocity variations.

To represent the anomaly event and enhance its features,
an extended node strength network and a morphological
opening operation were utilized. Te extended node strength
network was constructed based on the formulations described
in Section 2.3.2. Te extended node strength is calculated
using equation (12), and min-max normalization was applied
to the matrix of the extended node strength, represented by
matrix S in equation (13).Te feature extraction results for the
frames shown in Figure 9 are presented in Figure 10. Te
contours of the normalized node strength matrix depict the
motion information of the pixel points. Figure 10(a) shows
that, before the occurrence of the crack, there were no densely
highlighted regions except for some boundary areas. In
contrast, Figure 10(b) demonstrates that, after the develop-
ment of shear cracks, a densely highlighted region appears
within the crack area. However, intense vibrations concur-
rently lead to nonlinear motion of the wire, causing densely
highlighted regions to also appear around the wire, which
afects the accuracy of detecting anomalous events. Terefore,
feature enhancement is crucial.

A combined approach using diference processing and
morphological opening operations was introduced to extract
anomalous events by enhancing mutations in the high-
lighted area, as detailed in Section 2.3.3. Morphological
opening removes small objects or noise from binary or
grayscale images while preserving the overall structure of
larger objects. A diference process is applied to the contour
images from consecutive frames of the node strength net-
work. Te resulting diferential image is then converted into
a binary image based on a predefned threshold, set to 30
pixels for optimal enhancement. Following this, a disk-
shaped structuring element with a fve-pixel radius is
used for the opening operation. Te optimized results after
the morphological opening operation for all diferenced
frame images are shown in Figure 11. In this fgure, the
intensity within the yellow region is 255, while the remaining
regions exhibit a value of zero. As shown in Figure 11(a),
almost all highlighted areas are eliminated before crack
expansion (compared with Figure 10(a)). Figure 11(b) shows
that nearly all noise and incorrect detections are removed,

Structural specimen

Steel safety 
frame

Shaking table

Figure 5: Te overview of the building specimen [33].

8 Structural Control and Health Monitoring
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leaving only the highlighted regions corresponding to the
two shear cracks. Tis result demonstrates the occurrence of
anomalous events and indicates improved detection
efectiveness.

To further quantify the identifcation accuracy, we
proposed two evaluation indices p1 andp2. p1 is the ratio of
the number of pixels of highlighted areas in the anomaly
region to the number of pixels of highlighted areas in the
entire frame image. p2 is the ratio of the number of pixels of
highlighted areas in the anomaly region to the number of
pixels of the anomaly region. Te anomaly regions are frst
selected manually as shown in the white area of Figure 12. In
this case, the number of pixels of highlighted areas in the
anomaly region, the number of pixels of highlighted areas in
the entire frame image, and the number of pixels of the
anomaly region are 440, 601, and 4202, respectively. Tus,
the values of p1 andp2 can be calculated as 0.73 and 0.10. It
can be observed that the value of p2 is relatively small,
suggesting difculty in fully characterizing the entire
anomaly events area. However, the larger value of p1

indicates that the anomaly events area can be efectively
localized, providing valuable reference information for
subsequent damage maintenance eforts.

3.2. Validation on a Wooden House. Te previous case
highlights the efcacy of the proposed method in detecting
anomalous events, particularly pronounced shear cracks. To
further validate the method’s applicability for detecting
minor anomaly events, this section emphasizes its advan-
tages. It illustrates the efectiveness of the method in
identifying tiny cracks during a full-scale wooden house
shaking table test.

3.2.1. Experiment Introduction. Tis test involved two
buildings: Building A, a post-and-beam structure, and
Building B, a shear-wall structure, as shown in Figure 13.
Both buildings were designed with identical confgurations
and layouts, assuming similar earthquake resistance capa-
bilities during the design phase. Te key diference is that
Building A is equipped with a base-isolation system con-
sisting of 15 sliding bearings, six laminated rubbers, and six
oil dampers, whereas Building B is supported on soil [49].
Te experiment included 28 scenarios using the same
seismic inputs as in the previous case, such as random
signals, JMA Kobe waves, and JR Takatori waves. Addi-
tionally, 29 cameras were strategically placed to monitor
both buildings comprehensively, as illustrated in Figure 14.
For this case, video data capturing the opening and closing
process of a tiny crack in Building A was selected to assess
the efectiveness of the proposed method. After pre-
processing, the video had a resolution of 680× 400 pixels and
a duration of 10 s. Example frames at 2.6 and 2.8 s from the

Figure 6: Te views of diferent camera monitoring locations.

(a) (b)

Figure 7: Te example frames of original video: (a) before the cracks and (b) after the cracks.

Figure 8: Result of structural RoU identifcation based on transfer
learning.

Structural Control and Health Monitoring 9
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video clip, showing the crack’s development, are presented
in Figure 15. In Figure 15(a), the crack’s development is not
visible, whereas Figure 15(b) shows the crack development
within the red rectangular area.

3.2.2. Anomaly Event Detection Result by the Proposed
Method. Similar to Section 3.1.2, structural RoUs were
identifed to enhance computational efciency and detection
accuracy. In this case, the RoUs included doors and win-
dows. Te identifcation results are shown in Figure 16. It
can be observed that one door and two windows in Building

1

0.8

0.6

0.4

0.2

0

(a)

1

0.8

0.6

0.4

0.2

0

(b)

Figure 10: Results of feature extraction by extended node strength network (derived to diferentiated continuous frames around t� 4.2 s in
(a) and t� 4.5 s in (b)). (a) Before crack occurrence. (b) After crack occurrence.

(a) (b)

Figure 11: Results of feature enhancement for the pronounced shear cracks (derived to diferentiated continuous frames around t� 4.2 s in
(a) and t� 4.5 s in (b)). (a) Before crack occurrence. (b) After crack occurrence.

Figure 12: Damage frame with manually marked anomaly regions.

Soil box
Base isolation layer

A-buildingB-building

Figure 13: Te overview of the two test wooden buildings.

(a) (b)

Figure 9: Results of velocity feld estimation by optical fow at two image frames. (a) Before crack occurrence: t� 4.2 s. (b) After crack
occurrence: t� 4.5 s.

10 Structural Control and Health Monitoring
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A are accurately identifed, while a window in the upper left
corner of the frame in Building B is also successfully
detected.

Te next step involves estimating the velocity feld. To
facilitate the detection of tiny cracks, the pixel neighborhood
size parameter, which is critical for the robustness of the
Farneback optical fow method, was reduced to 5. All other
parameters remained unchanged from the previous case in
Section 3.1: Te number of pyramid layers is set to three, the
pyramid scale is 0.5, the number of iterations is three, and the
average flter size is 25 pixels. Te results for the velocity feld
during the closing and opening of the tiny cracks are shown in
Figure 17. Figure 17(b) reveals that only short arrows are
present in the area of the tiny crack, making it difcult to
identify the crack solely by evaluating the velocity feld.

Te subsequent steps involved feature extraction and
enhancement. As shown in Figure 18, the reduction in
neighborhood size parameters resulted in a higher number
of discretely highlighted parts (noise) compared to the case
in Section 3.1. Despite this, a clearly highlighted area near the
tiny crack remains visible in Figure 18(b). After feature

enhancement, as illustrated in Figure 19, nearly all noise
areas were efectively removed. Figure 19(a), shows the crack
in a closed state, while Figure 19(b) highlights distinct
changes in the area where the crack develops at t� 2.8 s,
demonstrating the opening of the tiny crack. However,
a bright spot near the window area in the upper left corner
indicates misidentifcation due to insufcient window
identifcation accuracy in the TL process. Additionally,
a highlighted point in the foundational section suggests
a need for further investigation. Overall, the anomaly event
detection results demonstrated high and acceptable
accuracy.

Similar to Section 3.1.3, the detection results are
quantitatively analyzed. In this case, the anomaly regions are
selected manually as shown in the white area of Figure 20.
Te number of pixels of highlighted areas in the anomaly
region, the number of pixels of highlighted areas in the entire
frame image, and the number of pixels of the anomaly region
are 108, 288, and 870. However, unlike the previous case, the
76 highlighted pixels in this case are located in the adjacent
structure (the upper left window) and can therefore be

Figure 14: Te views of diferent camera monitoring locations.

(a) (b)

Figure 15: Te example frames with (a) closing (t� 2.6 s) and (b) opening of the tiny crack (t� 2.8 s).

Figure 16: Result of structural RoU identifcation based on transfer learning.

Structural Control and Health Monitoring 11
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excluded from the analysis. Tus, the values of p1 andp2 can
be calculated as 0.51 and 0.12. In this case, the detection
accuracy decreases due to the small size of the crack.
However, it still ofers a useful reference for identifying
potential anomaly areas, providing a valuable candidate

region for further precise anomaly event detection and
localization.

3.3. A Discussion for Computational Efciency. In this study,
a key advantage of combining TL was the improvement in
computational efciency. Early identifcation and removal of
RoUs reduced the number of input pixels needed for sub-
sequent node strength network construction. Experimental
procedures were conducted on a Windows 10 Pro 64-bit
operating system, with data analysis performed using MAT-
LAB R2022a and Python 3.10.13. Te segmentation model ran
on a PC equipped with an RTX 3090 GPU. Table 1 compares
computational efciency before and after employing TL for
structural RoU identifcation. Once the BEiT+UperNet model
with TL was trained, it could predict door and window
components within 0.253 s per image frame. In contrast,

(a) (b)

Figure 17: Results of velocity feld estimation by optical fow with two phases: (a) closing of the crack (t� 2.6 s) and (b) opening of the crack
(t� 2.8 s).
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Figure 18: Results of feature extraction by extended node strength network with two phases: (a) closing of the crack (t� 2.6 s) and (b)
opening of the crack (t� 2.8 s).

(a) (b)

Figure 19: Results of feature enhancement for the tiny crack: (a) closing of the crack (t� 2.6 s) and (b) opening of the crack (t� 2.8 s).

Figure 20: Damage frame with manually marked anomaly regions.
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computing the node strength network for one image required
159 and 249 s for the two cases, respectively. Consequently, the
time required for processing target video data, including RoU
prediction using the deep learning model, was signifcantly
reduced. Additionally, we expanded our dataset for compar-
ison by incorporating data from the 4-story steel structure
shaking table test, as shown in Figure 4. Table 1 illustrates
a positive correlation between improvements in computational
efciency and the proportion of structural RoUs. Te selected
test cases demonstrate an average efciency improvement of
approximately 10%. In practical applications, analyzing cases
with a larger proportion of structural RoUs results in greater
efciency gains.

4. Conclusions

Tis study proposed a novel anomaly detection algorithm
that focused on nonlinearity occurrence by combining deep
learning techniques with an optical fow-based extended
node strength network. Te approach stems from the ob-
servation that such events cause nonlinear disturbances in
the velocity vector feld, which can be estimated from video
data. Additionally, structural RoUs, such as doors and
windows, are often not the primary focus of SHM. Pre-
identifying these areas before initiating damage detection
can signifcantly enhance the efciency of the process. Te
major conclusions of this study are summarized as follows:

• TL enables efcient learning processes. With only 170
training images, segmentation of structural envelope
components like doors and windows was achieved
with an IoU greater than 0.8. Tis success can be
attributed to feature extraction methods learned from
large-scale image datasets, facilitated by MIM pre-
training with BEiT and segmentation pretraining with
the BEiT +UPerNet framework.

• Te Farneback optical fow method facilitates the es-
timation of full-feld displacement responses from
video data, allowing for the efective application of
feature extraction methods to identify nonlinear dis-
turbances. Furthermore, the developed feature ex-
traction and enhancement method has been efectively
applied to video data from two large-scale shaking
table tests conducted by E-defense. Te detection and
quantitative analysis results show that the proposed
method identifes the locations of anomalous events
with acceptable accuracy, including pronounced shear
cracks and tiny cracks.

• TL is efective in identifying RoUs, which reduces
computational costs. Te integration of TL has led to

approximately a 10% increase in computational ef-
ciency. Moreover, as computational efciency improves
with the proportion of structural RoUs in the video data,
analyses involving a higher proportion of these regions
are expected to yield more signifcant enhancements.

Although the proposed method can detect anomalous
events, several limitations and issues remain that need to be
addressed in future research. First, since the analysis relies
on video data, factors such as luminance, resolution, and
frame rate directly afect detection accuracy. Second,
detecting tiny cracks requires adjusting parameters that
infuence robustness, which may also increase noise. Bal-
ancing these factors warrants further investigation. Tird,
while this study focuses on identifying structural RoUs,
enhancing the identifcation of detailed structural compo-
nents, such as beams and columns, and separately analyzing
these parts could signifcantly improve both detection ac-
curacy and efciency for anomaly events.
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ensmittelüberwachung 5 (2017): 6FL.

[49] T. Nagae, S. Uwadan, C. Yenigodan, et al., “Te 2019 Full-
Scale Shake Table Test Program of Wood Dwellings,” 17th
World Conference on Earthquake Engineering 27 (September
2021).

Structural Control and Health Monitoring 15

 schm
, 2025, 1, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1155/stc/4702519 by T
aisei Saida - U

niversity O
f T

sukuba , W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://doi.org/10.1007/s00348-024-03768-2
http://doi.org/10.1007/s00348-024-03768-2
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/3-540-45103-x_50
http://doi.org/10.1103/physreve.82.046111
http://doi.org/10.1103/physreve.82.046111
http://doi.org/10.1016/j.physa.2015.07.020
http://doi.org/10.1515/mathm-2020-0103

	Optical Flow-Based Structural Anomaly Detection in Seismic Events From Video Data Combined With Computational Cost Reduction Through Deep Learning
	1. Introduction
	2. Methodology
	2.1. Literature Review of State-of-the-Art Studies Using Optical Flow
	2.2. Framework of the Proposed Method
	2.3. TL for RoU Identification
	2.4. Overview of Anomaly Event Detection Method
	2.4.1. Velocity Field Estimation by Optical Flow
	2.4.2. Feature Extraction by Extended Node Strength Network
	2.4.3. Feature Enhancement by Morphological Opening Operation


	3. Anomaly Event Detection for Three-Dimension Scaled Shaking Table Test
	3.1. Validation on a RC Frame Building
	3.1.1. Experiment Introduction
	3.1.2. Structural RoU Identification by TL
	3.1.3. Anomaly Event Detection by Proposed Extended Node Strength Network

	3.2. Validation on a Wooden House
	3.2.1. Experiment Introduction
	3.2.2. Anomaly Event Detection Result by the Proposed Method

	3.3. A Discussion for Computational Efficiency

	4. Conclusions
	Data Availability Statement
	Conflicts of Interest
	Funding
	Acknowledgments
	References




