第28回計算工学講演会 A-01-04

深層カーネル学習サロゲートモデル による高次元不確定性をもつ 構造信頼性解析の効率化

才田 大聖 (筑波大学大学院) Rashid Muhammad (筑波大学大学院) 西尾 真由子 (筑波大学)

【背景】信頼性解析の流れ

【背景】信頼性解析の流れ

【背景】信頼性解析の流れ

フラジリティ評価

• 特定の地震動指標に対し、特定の限界状態に到達する確率を評価

【目的】高次元不確定性を考慮する深層カーネル学習モデル

深層カーネル学習サロゲートモデルで高次元不確定性のある 信頼性解析の計算コストを低減する 4/13

【手法】ガウス過程回帰・深層カーネル学習

ガウス過程回帰

- ノンパラメトリック
- 予測分散の出力が可能 $y = f(\mathbf{x})$ $f \sim GP(\mathbf{0}, k(\mathbf{x}, \mathbf{x'}))$ $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$
- **x**:入力ベクトル y:出力ベクトル k:カーネル関数 K: カーネル行列

カーネル行列

$$K_{\rm mn} = k(\mathbf{x}_{\rm m}, \mathbf{x}_{\rm n})$$

*K*_{mn}: カーネル行列の要素

Matern 5/2 (ARD)カーネル

$$k(\mathbf{x}_{m}, \mathbf{x}_{n}) = \sigma \left(1 + \sqrt{5} \sum_{i=1}^{D} \frac{r_{i}}{l_{i}} + \frac{5}{3} \sum_{i=1}^{D} \frac{r_{i}^{2}}{l_{i}^{2}} \right) \exp \left(-\sqrt{5} \sum_{i=1}^{D} \frac{r_{i}}{l_{i}} \right)$$

where $r_{i} = |x_{mi} - x_{ni}|$

 $r_i - r_{mi}$

【手法】ガウス過程回帰・深層カーネル学習

ガウス過程回帰

- ・ ノンパラメトリック
- 予測分散の出力が可能
 y = f(x)
- $f \sim GP(\mathbf{0}, k(\mathbf{x}, \mathbf{x'}))$ $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$
- x:入力ベクトル y:出力ベクトル k:カーネル関数 K:カーネル行列

カーネル行列

 $K_{nm} = k(\mathbf{x}_{n}, \mathbf{x}_{m})$ K_{nm} : カーネル行列の要素

Matern 5/2 (ARD)カーネル

 $k(\mathbf{x}_{m}, \mathbf{x}_{n}) = \sigma \left(1 + \sqrt{5} \sum_{i=1}^{D} \frac{r_{i}}{l_{i}} + \frac{5}{3} \sum_{i=1}^{D} \frac{r_{i}^{2}}{l_{i}^{2}} \right) \exp \left(-\sqrt{5} \sum_{i=1}^{D} \frac{r_{i}}{l_{i}} \right)$

5/13

where $r_i = |x_{mi} - x_{ni}|$

深層カーネル学習 (Wilson et al. ICAIS, 2016)

- ・ ノンパラメトリック
- 予測分散の出力が可能
- 複雑な回帰が可能

$$k(\mathbf{x}_m, \mathbf{x}_n) \rightarrow k(g(\mathbf{x}_m, \mathbf{w}), g(\mathbf{x}_n, \mathbf{w}) | \mathbf{w})$$

g: 深層学習器による関数

【対象問題】高架橋システムの有限要素モデル^{6/13}

解析モデル:6径間連続2箱桁橋

Rashid et al., Proceedings of EVACES, 2022

- 橋長 : 327.9 m 解析ソフト : Engineer Studio
- 幅員 : 13.0~16.95 m 地震入力方向:橋軸直角方向
 - :積層免震ゴム支承

支承

橋脚

:5本の鋼製橋脚、1本のRC橋脚

【対象問題】システムの限界状態と入力地震動の設定

限界状態の設定

- RC橋脚・免震支承・鋼製橋脚それぞれに限界状態を設定
- システムはいずれかの部材の限界状態到達時に限界状態と設定

部材	応答	限界状態				
		Slight	Moderate	Extensive	Collapse	
RC橋脚	応答塑性率	$\mu d > 1.00$	$\mu d > 1.20$	$\mu d > 1.76$	$\mu d > 4.76$	
免震支承	せん断ひずみ	$\gamma > 1.0$	$\gamma > 1.5$	$\gamma > 2.0$	$\gamma > 2.5$	
鋼製橋脚	ひずみ	$\varepsilon > \varepsilon$ y		$\varepsilon > 7 \times \varepsilon$ y		

入力地震動

- 設計地震動 :Level2Type2-2-1
- · 入力角度

【対象問題】高架橋システムの不確定性と入出力

8/13

不確定性の設定

- 全22支承について、一次剛性と降伏荷重の不確定性を設定
- 地震動強さの変動倍率を設定
- 合計45パラメータの不確定性を設定

入力			出力		
不確定パラメータ	不確定性 (一様分布)	パラメータ数	部材	最大出力	
支承の一次剛性	±10%	22	支承	せん断ひずみ	
支承の降伏荷重	±15%	22	鋼製橋脚	ひずみ	
地震動の最大加速度	0.1 – 2.0g	1	RC橋脚	変位	
			橋台	変位	

テストデータでの予測	RC橋脚		GPR	MLP	DKL
訓練データ:300	(最大変位)	P6	0.968	0.973	0.977
テストデータ:200	鋼製橋脚	P7	0.998	0.99	0.995
	(最大ひずみ)	P8	0.998	0.992	0.996
すべての出力において、		P9	0.972	0.965	0.972
決定係数(R ²)が		P10	0.976	0.953	0.959
0.959より高い		P11	0.977	0.976	0.978
	免振支承	B6	0.977	0.991	0.993
P6橋脚 R ² :0.977	(最大せん断 ひずみ)	B7	0.975	0.989	0.99
600 RC梧脚		B8	0.976	0.989	0.992
		B9	0.973	0.988	0.99
₩ ⁴⁰⁰		B10	0.973	0.987	0.989
		B11	0.977	0.989	0.991
		B12	0.973	0.983	0.986
		B13	0.965	0.974	0.976
(B14	0.967	0.983	0.984
		Average	0.97633	0.98147	0.98453

サロゲートモデルによるフラジリティカーブ

計2千万回の繰り返し計算(物性値1万点×地震動強さ2000点)

代替モデルでフラジリティを統計系的に算出可能

10/13

サロゲートモデルによるフラジリティカーブ

システム限界状態の原因となった部材を特定可能

サロゲートモデルによるフラジリティカーブ

システム限界状態の原因となった部材を特定可能

12/13

結論と今後の展望

結論

- ・ 地震応答解析のサロゲートモデルを、高次元不確定性パラメータから MLPで特徴抽出する深層カーネル学習で構築した
- 構築したサロゲートモデルはすべての予測出力でR2指標0.959を超えて おり、高精度で予測が可能であった
- 構築したサロゲートモデルによって、2千万回の繰り返し計算によって、
 フラジリティカーブを算出した
- 橋梁システムの限界状態に寄与していた部材をサロゲートモデルによって、
 推定することが可能であった

今後の展望

アダプティブサンプリングなどの組み合わせによって、
 より低計算コストにサロゲートモデルが構築できる可能性がある