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I will be presenting on Gaussian Process Regression Surrogate Modeling with Transfer Learning for Low Computational Cost Structural Reliability Analysis.



【Background】Necessity to consider uncertainties in infrastructures

（MLIT，Measures to prevent roads from aging，Aging Status）
（MLIT，Anti-aging Initiatives）

• Infrastructures such as bridges are designed for load and strength.
• However, structures may deteriorate and suffer damage, or collapse due 

to earthquakes or other damage, during the service life of a that.
• This is due to the difference between design and reality. 

There are many uncertainties in reality.
• Therefore, a reliability analysis is needed that considers uncertainties 

related to loads and structural strength.

【Deterioration and damage of bridges】

（JSCE, Steel Structure Committee）
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【Examples of serious damage】

Steel pile pier corrosion

Displacement of approx. 60 cm

Maximum step height of 
approx. 40 cm

Steel piers show 
no damage

All bearings ruptured
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Let me first provide some background.
Infrastructures such as bridges are designed for load and strength.
However, structures may deteriorate and suffer damage, or collapse due to earthquakes or other damage, during the service life of a that.
This is due to the difference between design and reality. �There are many uncertainties in reality.
Therefore, a reliability analysis is needed that considers uncertainties related to loads and structural strength.




【Background】Reliability Analysis Flow
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This section describes the flow of reliability analysis.
First, suppose there is a structure such as a bridge. Uncertainties such as its mass must be considered.
Therefore, in general reliability analysis, Monte Carlo sampling is used to sample from within the uncertainty parameter space. For that sample, we analyze it using an analytical model. The output distribution is then obtained, and disaster risk is evaluated. However, this method often requires more than a thousand analyses and is computationally expensive.
Therefore, reliability analysis using surrogate models is attracting attention. Here, analysis is performed on DoE sample points with an analytical model. From the analyzed data, a surrogate model is constructed by machine learning. The surrogate model is used to predict the output distribution. This method reduces the number of numerical analyses compared to the method described above.



【Previous Research】Reduced computational cost of building surrogate models

• Adaptive Sampling
Reduces computational cost by 
focusing on hard-to-predict points 
and points of high importance 
when sampling input parameters
Echard et al., Structural Safety, 2011

• Variable fidelity surrogate model
The use of low-fidelity analysis 
results with low computational cost 
reduces the number of targeted 
high-computational-cost analyses
Skandalos et al., Structural Safety, 2022

The surrogate model is valid only 
for the analysis of the targetProblem

(Jan et al., Archives of Computational 
Methods in Engineering, 2021)

(Tian et al., Composite Structures, 2021)
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This section presents previous work on surrogate models for reducing computational costs.
The first is adaptive sampling. This method reduces the computational cost by focusing on hard-to-predict points and points of high importance when sampling input parameters.
The second is a variable fidelity surrogate model. In this method, the use of low-fidelity analysis results with low computational cost reduces the number of targeted high-computational-cost analyses.
In either method, the surrogate model is valid only for the analysis under consideration. In other words, the surrogate model constructed is not useful for other analyses.
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Therefore, this study considered the Transfer Learning Gaussian Process Regression Surrogate Model (TL-GPRSM).
The story we consider here is that a reliability analysis was performed during the design of a bridge. Then, during the evaluation of a damaged bridge, the analysis data obtained during design is used in transfer learning. In this way, the reliability analysis of existing bridges can be performed at a low computational cost without wasting the design analysis.



【Previous Reserch】Surrogate model with transfer learning

• Application of Transfer Learning 
to Variable Fidelity Surrogate 
Models：
Transfer learning of DNN 
models trained on low-fidelity 
data to high-fidelity domains
(Tian et al., Composite Structures, 2021)

• Surrogate models for energy 
system optimization：
Using transfer learning to 
respond to environmental 
changes such as wind and solar
(Perera et al., Applied Energy, 2019)

The case of unsuccessful transfer 
learning is not anticipated.
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This section discusses previous research on surrogate models using transition learning.
The first is the application of transfer learning to variable-fidelity surrogate models. Here, transfer learning of DNN models trained on low-fidelity data to high-fidelity domains.
The second is a surrogate model for energy system optimization. Here, using transfer learning to respond to environmental changes such as wind and solar.
In both cases, transfer learning was successful, but there was no consideration for the cases where it did not succeed.



Issues in transfer learning
• Negative Transfer

Transfer learning degrades 
the performance of 
machine learning models.

⇩

The cause is low similarity 
between the source and 
destination data.

Tommasi et al., IEEE transactions on pattern analysis and machine intelligence, 2013

The possibility of negative transfer should be considered
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One problem with transfer learning is negative transfer.
Negative transfer means that transfer learning results in lower model performance than without transfer learning.
This is known to occur when the source and target of transfer learning have low data similarity.
Therefore, we think that the possibility of negative transfer should be considered when using transfer learning.



Gaussian Process Regression (GPR) with ARD Kernel

x : input vector
y : output vector
k：kernel function
K : kernel matrix

 
Knm : elements of kernel matrix

2

i i i

2
1 1 1i i i

5
( ) 1 5 exp 5

3

D D D

i i i

r r r
k σ

l l l= = =

= + + −
   
   
   

∑ ∑ ∑r

Length Scale（li）
Represents the contribution 
of each input variable to the output

ARD：Automatic Relevance Determination

Estimate the contribution 
of input parameters

GPR

Kernel Matrix

ARD Kernel Function

ARD Kernel

Matern5/2 kernel

• Nonparametric
• Non-linear regression

8/26

Poisson’s ratio

Yang’s modulus

Thickness

Contribution (%)

プレゼンターのノート
プレゼンテーションのノート
The regression method used in this study is Gaussian process regression. Gaussian process regression is nonparametric and allows for nonlinear regression. In Gaussian process regression, the output value y and the input value x are related by a function f. If that f follows a Gaussian process, then the output vector y is represented by a multivariate normal distribution represented by a kernel matrix K.
The elements of the kernel matrix K are represented by kernel functions.
In this study, the ARD kernel function was used; the ARD kernel has a characteristic parameter, length scale, circled in red. This parameter represents the contribution of each input parameter to the output. The smaller this parameter is, the larger the contribution.
Parameters such as length scale can be estimated by the second type of maximum likelihood estimation. Therefore, the contribution of the input parameters can also be estimated.



Transfer Learning in Gaussian Process Regression
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In this section, we describe the transfer learning method. Based on previous studies, we used the transfer learning method with dimensionality expansion shown in the figure. In the figure, the horizontal direction is the dimension of the uncertain input parameters, and the vertical direction is the number of data. In this method, the input x in the source domain is extended to be x,x,0, and the input x in the target domain is extended to be x,0,x. The dimension-expanded portions are referred to as common, source, and target. This common part contributes to both the source and target of the transfer learning. In other words, the larger the contribution of this part is, the more effective the transfer learning is. The contribution of each part can be estimated by ARD. This allows us to know the magnitude of the effect of transfer learning during the construction of the surrogate model.



FE model of bridge

All bridge model
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This section describes the analytical model used in this study.
A half-girder model of a standard simple I-girder bridge with a span length of 2000 mm and a width of 10700 mm was used as the analytical model.
Each member of the main girder and the floor plate were modeled with shell elements, and the steel wire bearings were modeled with solid elements.
The number of elements was 104799, and Abaqus was used as the analysis software.
A half-girder model was used in this study, which was adjusted to match the behavior of the full-bridge model.
This model has a corrosion zone at the girder ends.



Uncertainty setting
FE Model Parameters (Units) At Design At Damage

Nominal COV Nominal COV
#1 Dc Density of concrete slab(kg/m3) 2400 0.0171 * *
#2 Es Young's modulus of steel main girders(GPa) 200 0.0450 * *
#3 Ec Young's modulus of concrete slab(GPa) 25 0.0167 22.5 0.0333
#4 Eb Young's modulus of steel bearings(GPa) 200 0.0450 * *
#5 Vs Poisson’s ratio of steel main girder 0.3 0.0910 * *
#6 Vc Poisson’s ratio of concrete slab 0.2 0.0167 * *
#7 Vb Poisson’s ratio of steel bearing 0.3 0.0910 * *
#8 Cf Friction coefficient of steel bearing 0.2 0.0167 0.9 0.0333
#9 Tuf1 Thickness of upper flange of steel girder at near-end section (mm) 0.0190 0.0121 * *
#10 Tuf2 Thickness of upper flange of steel girder at mid-span section (mm) 0.0300 0.0121 * *
#11 Tw Thickness of web plate of steel girder (mm) 0.0090 0.0121 * *
#12 Tbf1 Thickness of lower flange of steel girder at near-ends section (mm) 0.0270 0.0121 * *
#13 Tbf2 Thickness of lower flange of steel girder at mid-span section (mm) 0.0300 0.0121 * *
#14 Tstc Thickness of stiffener of steel girder at near-ends section (mm) 0.0130 0.0121 * *
#15 Tstm Thickness of stiffener of steel girder at mid-span section (mm) 0.0100 0.0121 * *
#16 Tstn Thickness of stiffener of steel girder at other section (mm) 0.0065 0.0121 * *

#17 Tbf-d
Thickness of corroded area in lower flange of steel girder at near-
end section (mm) − − 0.025 0.0270

#18 Tw-d Thickness of corroded area in web plate of steel girder (mm) − − 0.008 0.0162

#19 Tst-d
Thickness of corroded area in stiffener of steel girder at
near-end section (mm) − − 0.012 0.0162

※Determined with reference to previous studies
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In this study, the uncertainties of the model on the previous page are set as follows.
The uncertainties are changed for bridge design and for damage.
The parameters in orange are considered only in the case of damage, or the uncertainties are changed.



Reliability Analysis Overview
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This section provides an overview of the reliability analysis using the model described earlier.
The uncertain parameters mentioned earlier, 16 at the design and 19 at the damage, are considered. A finite element analysis is performed for the design live load applied. The maximum stress at the girder end obtained from that calculation is output. The distribution of the maximum stress is shown in the figure. In this figure, blue is at the design, and red is at the damage. It can be seen that the maximum stress was higher in the damage condition.
Here is a summary of the inputs and outputs. The inputs are the uncertainty parameters and the output is the maximum Mises stress.
This is also the same for the surrogate model.



Datas for Transfer Learning
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This section describes the data used for transfer learning.The data at the design is the Source data, and the data at the damage is the Target data.In both cases, the inputs x are uncertain parameters, and the output y is the maximum stress.The data at the design is used in the transfer learning for the analysis at the damage.



【Result】Accuracy of TL-GPRSM
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I will now discuss the results.
First is the accuracy of TL-GPRSM.
In the graph below, the red line is the prediction accuracy with TL-GPRSM and the blue line is that with the surrogate model without transfer learning.
In the validation, three patterns are validated with the number of data at design time. The horizontal axis is the number of data at degradation, and the vertical axis is the RMSPE.
The graph shows that TL-GPRSM is more accurate than the surrogate model without transfer learning regardless of the number of data at design time. Looking at the black line, TL-GPRSM can obtain the same level of accuracy as the surrogate model without transfer learning with about 40% less data.
Also, the larger the number of data at the design, the higher the accuracy of TL-GPRSM in the green area with fewer data at the damage.




【Result】Predicted Distribution of Maximum Stress

Predicted Distribution of Maximum Stress（10 trials）

• TL-GPRSM converged faster on the number of training data than the 
surrogate model without transfer learning

• TL-GPRSM predicted a distribution shape closer to that by FE analysis than 
the SM without transfer learning for the same number of training data

ー TL-GPRSM（10 trials）
ー without TL（10 trials）
ー FE Analysis

Number of data at design：30
Number of data at damage:
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Next is the predicted distribution of maximum stress.
Here, the number of data at the design is 30. The red line is the TL-GPRSM; the blue line is the surrogate model without transfer learning. The black line is the distribution from the FE analysis.
The horizontal axis is the maximum stress, and the vertical axis is the cumulative distribution probability.
The number of data at the damage is shown at the top.
It shows that the TL-GPRSM had faster convergence of the predicted distribution than the surrogate model without transfer learning. It can be seen that for the same number of data, the shape of the TL-GPRSM is closer to the results from the FE model.



【Result】 parameter contribution estimation by ARD
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• The higher the number of source data, the higher the contribution of the 
common part, and the greater the effect of transfer learning.

• The number of source data (30) and the number of source data (100) 
converged to roughly the same contribution.
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Next are the results of contribution estimation by ARD.
The red line in the graph below shows the Common part, the blue line shows the Target part, and the green line shows the Source part. This corresponds to the dimensionality expansion mentioned earlier.
The horizontal axis is the number of data at the damage, and the vertical axis is the contribution by ARD.
This shows that the more data at the design, the greater the contribution of the common part. This means that the effect of transfer learning is significant.
This result is also consistent with the RMSPE results mentioned earlier.
In addition, when the source data was 30 and when the source data was 100, they converged to roughly the same contribution.



【Result】 parameter contribution estimation by ARD

0 5 10 15 20

Dc
Es
Ec
Eb
Vs
Vc
Vb
Cf

Tuf1
Tuf2

Tw
Tbf1
Tbf2
Tstc
Tstn

Tstm

Contribution (%)
0 5 10 15 20

Dc
Es
Ec
Eb
Vs
Vc
Vb
Cf

Tuf1
Tuf2

Tw
Tbf1
Tbf2
Tstc
Tstn

Tstm

Contribution (%)
0 5 10 15 20

Dc
Es

Ec_d
Eb
Vs
Vc
Vb

Cf_d
Tuf1
Tuf2

Tw
Tbf1
Tbf2
Tstc
Tstn

Tstm
Tbf_d
Tw_d
Tst_d

Contribution (%)

Number of data at design  : 30 
Number of data at damage : 15

Common part Source part Target part

The contributions of 
parameters related 

to damage are large.

The contribution of 
the friction 

coefficient of the 
bearing is significant.

Contribution of each uncertain parameter

• ARD is able to properly estimate the contribution.

17/26

プレゼンターのノート
プレゼンテーションのノート
Next are the results of contribution estimation by ARD for each uncertain parameter.Here are the results for 30 data at the design and 15 data at the damage.The horizontal axis is the contribution, and the vertical axis is each uncertain parameter.In the Common part, the contribution of the friction coefficient of the bearing was significant. This means that this parameter contributed both at the design and at the damage.In the Target part, the contribution of parameters related to damage was significant. This result seems to be consistent with engineering findings.This indicates that the ARD can properly estimate the contribution.
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Here is another story about building TL-GPRSM.
Suppose here that a seismic response analysis is performed using the design earthquake motion at the design. When building a surrogate model for an analysis using an observed earthquake motion, the analyzed data at the design is used by transfer learning. We thought this could reduce the cost of reliability analysis using earthquake response analysis with the observed earthquake motion.



Analytical model of isolated RC piers

2DOF model of 
Isolated RC Pier

RC Pier

Bilinear
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Integration：
• Newmark - β

• Newton Raphson

Time Increment：0.001s
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Parameters
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The model used for the seismic response analysis was the P1 pier in this figure, modeled in 2DOF. The RC pier was modeled with the Takeda. The isolation bearing was modeled with the Bilinear model. The Newmark β and Newton-Raphson methods were used for the analysis. The time increment was 0.001 seconds, and Rayleigh damping was assumed. The damping ratio was set to 2% for the pier and 0% for the bearing.



Parameters Nominal Uncertainty

Superstructure weight (Mu) 604000 kg

Uniform
Distribution
± 10 %

Seismic
Isolation
Bearing

Primary stiffness (Kb1) 40023.2 kN/m

Secondary stiffness (Kb2) 6154.4 kN/m

Yield load (Qb) 1117.2 kN

RC Pier

weight (Mrc) 346300 kg

Primary stiffness (Krc1) 110000 kN/m

Secondary stiffness (Krc2) 8250 kN/m

Yield load (Qrc) 3399 kN

Uncertainty parameter setting
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Shown here are the uncertainty parameters for the 2DOF model. A uniform distribution of ±10% was set for all parameters. This uncertainty was determined by referring to design standards and previous studies.



Reliability Analysis Overview and Input/Output

Surrogate model inputs and outputs

Inputs
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8 Variables

Surrogate Model Outputs
Maximum Displacements
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Here is an overview of the reliability analysis using seismic response analysis. First, the parameter uncertainties mentioned earlier are considered. Then, seismic response analysis is performed, and the maximum displacements of the pier and the bearing are output. The output distributions of the maximum displacements are obtained as shown in the figure.
Here, the inputs and outputs of the surrogate model are summarized. The inputs are 8 uncertain parameters. And the output is the maximum displacements of the pier and the bearing.



Datas for Transfer Learning
Source Data: Level2-Type1-1-1 (200 data) and 

Level2-Type2-1-1 (200 data)

Maximum
Displacement

Uncertain
Parameter

Maximum
Displacement

Uncertain
Parameter

yS xS

yT xT

Target Data: JMA-KOBE Earthquake
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This section is about data for transition learning.
For the source data, the analysis data using Level2-Type1-1-1 and Level2-Type2-1-1, the design seismic motions, were used. A total of 200 data sets were used for each.
For the target data, the analysis data using JMA-KOBE, the observed seismic motion, is used.
For both source and target data, the uncertainty parameter is the input, and the maximum displacement is the output. This source data is used to analyze the target data through transfer learning.



【Result】Accuracy of TL-GPRSM
Predict Maximum Displacement（10 Trials）

• In predicting the maximum displacement of the Pier, TL-GPRSM 
was more accurate than the SM without transfer learning

• In the prediction of the bearing, the presence or absence of 
transfer learning did not affect the prediction accuracy.
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Here are the results.
First is the accuracy of the TL-GPRSM.
In this figure, the red line is from TL-GPRSM, and the blue line is from the surrogate model without transfer learning. The horizontal axis is the number of target data, and the vertical axis is the RMSPE. The left side is for the Pier, and the right side is for the bearing.
The figure shows that TL-GPRSM is more accurate in predicting the maximum displacement of the Pier. For the prediction of the maximum displacement of the bearing, the accuracy of the surrogate model did not change with or without transfer learning.



【Result】Predicted Distribution of Maximum Displacement

Predicted Distribution of Maximum Displacement（10 trials）

• For Pier, the maximum displacement distribution was predictable
• For Bearing, the TL-GPRSM was able to roughly predict the maximum 

displacement distribution, but was not able to properly predict the 
distribution shape at the tail

ー TL-GPRSM
ー 2DOF model
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This is about predicting the distribution of maximum displacement.
The red line is the distribution obtained from the TL-GPRSM, and the black line from the 2DOF model. The horizontal axis is the maximum displacement, and the vertical axis is the cumulative distribution probability. The left side is for the pier, and the right side is for the bearing. These figures show that TL-GPRSM could predict the distribution for the maximum displacement of the piers. For the maximum displacement of the bearings, TL-GPRSM could predict the distribution roughly but could not predict the distribution well for the tails.



【Result】 parameter contribution estimation by ARD

Contribution of each part
ー Common part
ー Target part
ー Source part

• In general, the contribution of the Common part was smaller than the 
surrogate model to the analysis in the previous case, converging to about 4% 
or less.
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The next is the contribution estimation by ARD to each part.
In the figure below, the red line is the common part, the blue line is the target part, and the green line is the source part. Here, each of these parts corresponds to the dimensional extension shown in the upper right. The horizontal axis is the number of target data, and the vertical axis is the estimated contribution. The left is for the piers, and the right is for the bearings. 
The figure shows that the contribution of the common part in both cases was relatively low and converged to about 4%. This is less than half that of the surrogate model for bridges with damaged sections, where the transfer learning worked well. Therefore, we think that the magnitude of the effect of transfer learning can be estimated by estimating the magnitude of the contribution of the common part by ARD.



Conclusion and Future work

• A transfer learning Gaussian process regression surrogate model (TL-GPRSM) was 
proposed and applied to evaluate the active load performance of a corrosion-
damaged steel plate girder bridge by using design data for post-damage analysis

• Looking at RMSPE, TL-GPRSM achieved a reduction in computation cost of 
over 40%

• The effectiveness of transfer learning was higher the greater the number of 
source data

• TL-GPRSM was used for seismic response analysis with different input seismic 
motions, and the data obtained with the seismic design motion was used during the 
analysis with the observed seismic motion

• The accuracy of TL-GPRSM was slightly higher than without transfer learning
• The contribution of the Common part, which measures the effect of transfer 

learning, was generally lower than in the first case analysis

• Combined with adaptive sampling, which preferentially samples points that have a 
significant impact on the performance of the surrogate model, the computational 
cost could be further reduced

Conclusion

Future Work
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This is conclusion and future work.
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