**SPIE Smart Structures + NDE 2023** 



Gaussian process regression surrogate model for dynamic analysis to account for uncertainties in seismic loading

Taisei Saida (University of Tsukuba)

Mayuko Nishio (University of Tsukuba)



### **Uncertainties in infrastructures**

- Infrastructures such as bridges are designed for load and strength.
- However, during the service life, structures may deteriorate and suffer damage.
- This is due to the difference between design and reality. In reality, there are many uncertainties.
- A reliability analysis is required that considers uncertainties related to loads and structural strength.



(MLIT, Measures to prevent roads from aging, Aging Status) (MLIT, Anti-aging Intiatives)

(JSCE, Steel Structure Committee)

### **Reliability Analysis Flow**

#### Target



#### Considering Uncertainties



### **Reliability Analysis Flow**



#### Considering Uncertainties



### **Reliability Analysis Flow**



# Surrogate models can reduce computational cost of reliability analysis

#### Abbiati et al. 2021

- Using parameters of artificial ground motions and structure as inputs
- Constructed surrogate model for seismic risk analysis of piping (Journal of Loss Prevention in the Process Industries, Vol.72)

Cannot input actual ground motion

[Previous Studies] Surrogate model for seismic response analysis

#### Abbiati et al. 2021

 Using parameters of artificial ground motions and structure as inputs

#### Constructed surrogate model for seismic risk analysis of piping (Journal of Loss Prevention in the Process Industries, Vol.72)

#### Zhang et al. 2020

Issue

- Seismic waveforms are input using convolutional neural networks (CNN)
- Constructed surrogate models for seismic response analysis of buildings (*Engineering Structures*, Vol.206)

Cannot input actual ground motion

7/21

Not consider structural uncertainty

 Unclear why the result is obtained

Considers both actual ground motion and structural parameters

 Be able to explain why the predicted results are obtained (Explainability)

#### **[Objective]** Deep kernel learning surrogate model

#### Feature extraction of seismic loads



Constructing **explainable** deep kernel learning surrogate model with CNN and GPR to reduce computational costs on seismic risk analysis

#### **Gaussian Process Regression (GPR) with ARD Kernel**

#### GPR

- Nonparametric
- Non-linear regression

$$y = f(\mathbf{x})$$
  

$$f \sim GP(\mathbf{0}, k(\mathbf{x}, \mathbf{x'}))$$
  

$$\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$$

- x : input vector
- $\mathbf{y}$  : output vector
- k: kernel function
- $\boldsymbol{K}:$  kernel matrix

#### **Kernel Matrix**

$$K_{\rm nm} = k(\mathbf{x}_{\rm n}, \mathbf{x}_{\rm m})$$

 $K_{nm}$ : elements of kernel matrix

#### **Gaussian Process Regression (GPR) with ARD Kernel**

#### GPR

- Nonparametric
- Non-linear regression

$$y = f(\mathbf{x})$$
  

$$f \sim GP(\mathbf{0}, k(\mathbf{x}, \mathbf{x'}))$$
  

$$\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$$

- x : input vector
- y : output vector
- k: kernel function
- $\boldsymbol{K}:$  kernel matrix

#### Kernel Matrix

 $K_{nm} = k(\mathbf{x}_{n}, \mathbf{x}_{m})$ 

 $K_{nm}$ : elements of kernel matrix

#### **ARD Kernel Function**

ARD : Automatic Relevance Determination Matern5/2 kernel

$$k(\mathbf{r}) = \sigma \left( 1 + \sqrt{5} \sum_{i=1}^{D} \frac{r_i}{l_i} + \frac{5}{3} \sum_{i=1}^{D} \frac{r_i^2}{l_i^2} \right) \exp \left( -\sqrt{5} \sum_{i=1}^{D} \frac{r_i}{l_i} \right)$$

#### **Gaussian Process Regression (GPR) with ARD Kernel**

#### GPR

- Nonparametric
- Non-linear regression

$$y = f(\mathbf{x})$$
  

$$f \sim GP(\mathbf{0}, k(\mathbf{x}, \mathbf{x'}))$$
  

$$\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$$

- x : input vector
- y : output vector
- k: kernel function
- $\boldsymbol{K}:$  kernel matrix

#### Kernel Matrix

 $K_{nm} = k(\mathbf{x}_{n}, \mathbf{x}_{m})$ 

 $K_{nm}$ : elements of kernel matrix

#### **ARD Kernel Function**

ARD : Automatic Relevance Determination Matern5/2 kernel

$$k(\mathbf{r}) = \sigma \left( 1 + \sqrt{5} \sum_{i=1}^{D} \frac{r_i}{l_i} + \frac{5}{3} \sum_{i=1}^{D} \frac{r_i^2}{l_i^3} \right) \exp \left( -\sqrt{5} \sum_{i=1}^{D} \frac{r_i}{l_i} \right)$$

#### Length Scale $(I_{\underline{i}})$

Represents the contribution of each input variable to the output

#### **ARD Kernel**

Ex) Poisson's ratio

Young's modulus

Thickness

### Estimate the contribution of input parameters



Contribution (%)

#### **Grad-CAM for contribution of seismic loads**



### Analytical model of an isolated RC pier



13/26

### **Uncertainty parameter setting**

|                                                         |                                                                                                                         | Parameters                      |                                     | Nominal       | Uncertainty                       |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------|---------------|-----------------------------------|
|                                                         | M <sub>u</sub>                                                                                                          | Superstructure                  | Weight ( <i>Mu</i> )                | 604,000 kg    | Uniform<br>Distribution<br>± 10 % |
|                                                         |                                                                                                                         | Seismic<br>Isolation<br>Bearing | Primary stiffness ( <i>Kb1</i> )    | 40,023.2 kN/m |                                   |
| К <sub>ь1</sub> ,<br>К <sub>ь2</sub> ,Q <sub>ь</sub>    |                                                                                                                         |                                 | Secondary stiffness ( <i>Kb2</i> )  | 6,154.4 kN/m  |                                   |
|                                                         |                                                                                                                         |                                 | Yield load ( <i>Qb</i> )            | 1,117.2 kN    |                                   |
| V                                                       | M <sub>rc</sub>                                                                                                         | RC Pier                         | Weight ( <i>Mrc</i> )               | 346,300 kg    |                                   |
| κ <sub>rc1</sub> ,<br>K <sub>rc2</sub> ,Q <sub>rc</sub> | $\begin{array}{c} Q_{rc} \\ \hline \\ $ |                                 | Primary stiffness (Krc1)            | 110,000 kN/m  |                                   |
|                                                         |                                                                                                                         |                                 | Secondary stiffness ( <i>Krc2</i> ) | 8,250 kN/m    |                                   |
|                                                         |                                                                                                                         |                                 | Yield load (Qrc)                    | 3,399 kN      |                                   |

(Reference: Japan Road Association, 1997)

### **Reliability Analysis Overview and Input/Output**<sup>15/26</sup>



## **[Result]** Predict Maximum Displacement<sup>16/21</sup>

#### Predicts by surrogate model

Train data: 300 Test data(from analysis): 10000



### **[Result]** Predict Maximum Displacement<sup>17/21</sup>

#### Predicts by surrogate model

Train data: 300 Test data(from analysis): 10000



Surrogate models can predict with high accuracies

### **[Result] Estimated Contribution**

#### Estimated Contribution to Pier's Max Disp

Train num: 300 Test (from analysis) num: 10000



### **[Result] Estimated Contribution**

#### **Estimated Contribution to Pier's Max Disp** Low Acceptability Test (from analysis) num : 10000 Train num : 300 1.01st Mode 1st Mode High 2500 2500 Response Spectrum (gal) (about 1.03s) (about 1.03s) Response Spectrum (gal) -0.8 0.8 Acceptability 2000 2000 Contribution Contribution 1500 1500 1000 1000 0.2 0.2 500 500 $0^{\dagger}_{0}$ 0.0 $0^{+}_{0}$ 0.0 2 3 2 3 Period (sec) Eigen Period (sec)

### **[Result] Estimated Contribution**



Contributions of seismic loads and structural parameters can be estimated

### **Conclusion and Future Works**

#### Conclusion

- A surrogate model for seismic response analysis using deep kernel learning was constructed.
- Seismic load features were extracted by CNN.
- The contributions of seismic loads were estimated by Grad-CAM and structural parameters by ARD.
- The constructed surrogate model exceeded 0.97 in the R2 index, and the predicted distribution was qualitatively consistent with the test data.
- In some cases, the Grad-CAM showed a larger contribution close to the natural period, while in other cases it did not.
- The ARD-estimated contributions were in agreement with the engineering findings as well, with the external forces having a larger contribution.
   Future Work
- Combined with adaptive sampling, which preferentially samples points that have a significant impact on the performance of the surrogate model, the computational cost could be further reduced

### Thank you for listening.

#### Acknowledgement

This study was supported by the JST FOREST Program, Japan





Fusion Oriented REsearch for disruptive Science and Technology